Application of Artificial Intelligence Methods for Predicting the Compressive Strength of Green Concretes with Rice Husk Ash

Author:

Kovačević Miljan1ORCID,Hadzima-Nyarko Marijana2ORCID,Grubeša Ivanka Netinger3,Radu Dorin4ORCID,Lozančić Silva2

Affiliation:

1. Faculty of Technical Sciences, University of Pristina, Knjaza Milosa 7, 38220 Kosovska Mitrovica, Serbia

2. Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 3, 31000 Osijek, Croatia

3. Department of Construction, University North, 104. Brigade 3, 42000 Varaždin, Croatia

4. Faculty of Civil Engineering, Transilvania University of Brașov, 500152 Brașov, Romania

Abstract

To promote sustainable growth and minimize the greenhouse effect, rice husk fly ash can be used instead of a certain amount of cement. The research models the effects of using rice fly ash as a substitute for regular Portland cement on the compressive strength of concrete. In this study, different machine-learning techniques are investigated and a procedure to determine the optimal model is provided. A database of 909 analyzed samples forms the basis for creating forecast models. The derived models are assessed using the accuracy criteria RMSE, MAE, MAPE, and R. The research shows that artificial intelligence techniques can be used to model the compressive strength of concrete with acceptable accuracy. It is also possible to evaluate the importance of specific input variables and their influence on the strength of such concrete.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference76 articles.

1. Green concrete partially comprised of rice husk ash as a supplementary cementitious material—A comprehensive review;Thomas;Renew. Sustain. Energy Rev.,2018

2. Sheheryar, M., Rehan, R., and Nehdi, M.L. (2021). Estimating CO2 emission savings from ultrahigh performance concrete: A system dynamics approach. Materials, 14.

3. Toward green concrete for better sustainable environment;Suhendro;Procedia Eng.,2014

4. United States Department of Agriculture (2023, December 14). Grain: World Markets and Trade Report, Available online: https://fas.usda.gov/data/grain-world-markets-and-trade.

5. (2023, June 01). Data Bridge Market Research Market Analysis Study. Available online: https://www.databridgemarketresearch.com/reports/global-rice-husk-ash-market.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3