GSA-KELM-KF: A Hybrid Model for Short-Term Traffic Flow Forecasting

Author:

Chai Wenguang1,Zhang Liangguang1,Lin Zhizhe2ORCID,Zhou Jinglin3,Zhou Teng4ORCID

Affiliation:

1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China

2. School of Information and Communication Engineering, Hainan University, Haikou 570228, China

3. School of Computer Science, Fudan University, Shanghai 200433, China

4. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550000, China

Abstract

Short-term traffic flow forecasting, an essential enabler for intelligent transportation systems, is a fundamental and challenging task for dramatically changing traffic flow over time. In this paper, we present a gravitational search optimized kernel extreme learning machine, named GSA-KELM, to avoid manually traversing all possible parameters to improve the potential performance. Furthermore, with the interference of heavy-tailed impulse noise, the performance of KELM may be seriously deteriorated. Based on the Kalman filter that cleverly combines observed data and estimated data to perform the closed-loop management of errors and limit the errors within a certain range, we propose a combined model, termed GSA-KELM-KF. The experimental results of two real-world datasets demonstrate that GSA-KELM-KF outperforms the state-of-the-art parametric and non-parametric models.

Funder

Guangdong Basic and Applied Basic Research Foundation

Guangdong Provincial Key Areas R&D Program Project

National Postdoctoral Fellowship Program

National Natural Science Foundation of China

Open Fund of State Key Laboratory of Public Big Data, Guizhou University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3