Enhancing Focus Volume through Perceptual Focus Factor in Shape-from-Focus

Author:

Ashfaq Khurram1ORCID,Mahmood Muhammad Tariq1ORCID

Affiliation:

1. Future Convergence Engineering, School of Computer Science and Engineering, Korea University of Technology and Education, 1600 Chungjeolro, Byeongcheonmyeon, Cheonan 31253, Republic of Korea

Abstract

Shape From Focus (SFF) reconstructs a scene’s shape using a series of images with varied focus settings. However, the effectiveness of SFF largely depends on the Focus Measure (FM) used, which is prone to noise-induced inaccuracies in focus values. To address these issues, we introduce a perception-influenced factor to refine the traditional Focus Volume (FV) derived from a traditional FM. Owing to the strong relationship between the Difference of Gaussians (DoG) and how the visual system perceives edges in a scene, we apply it to local areas of the image sequence by segmenting the image sequence into non-overlapping blocks. This process yields a new metric, the Perceptual Focus Factor (PFF), which we combine with the traditional FV to obtain an enhanced FV and, ultimately, an enhanced depth map. Intensive experiments are conducted by using fourteen synthetic and six real-world data sets. The performance of the proposed method is evaluated using quantitative measures, such as Root Mean Square Error (RMSE) and correlation. For fourteen synthetic data sets, the average RMSE measure of 6.88 and correction measure of 0.65 are obtained, which are improved through PFF from an RMSE of 7.44 and correlation of 0.56, respectively. Experimental results and comparative analysis demonstrate that the proposed approach outperforms the traditional state-of-the-art FMs in extracting depth maps.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3