Fixed Point Results for Hybrid Rational Contractions under a New Compatible Condition with an Application

Author:

Liu Xiaolan123ORCID,Zhou Mi4567ORCID,Hojat Ansari Arslan89,Saleem Naeem10ORCID,Jain Mukesh Kumar11

Affiliation:

1. College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China

2. Artificial Intelligence Key Laboratory of Sichuan Province, Zigong 643000, China

3. South Sichuan Center for Applied Mathematics, Zigong 643000, China

4. School of Science and Techology, University of Sanya, Sanya 572022, China

5. Center for Mathematical Reaserch, University of Sanya, Sanya 572022, China

6. Academician Guoliang Chen Team Innovation Center, University of Sanya, Sanya 572022, China

7. Academician Chunming Rong Workstation, University of Sanya, Sanya 572022, China

8. Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj 6915136111, Iran

9. Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0204, South Africa

10. Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan

11. Jawahar Navodaya Vidyalaya, Udalguri 784509, India

Abstract

In this scholarly discourse, we present proof of the existence of unique fixed points in b-metric spaces for hybrid rational contractions. Moreover, we establish a common fixed point theorem for four self-mappings, assuming S-compatibility for two pairs of self-mappings within the framework of b-metric spaces. As a practical demonstration of the aforementioned results, we apply them to a type of integral equation and derive a theorem that guarantees the existence of solutions.

Funder

Sichuan University of Science and Engineering

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Fund Project of Sichuan University of Science and Engineering in hit-haunting for talents

2021 Innovation and Entrepreneurship Training Program for College Students of Sichuan University of Science and Engineering

Key R&D Project of Hainan Provincial Natural Science Foundation

High Level Project of Hainan Provincial Natural Science Foundation

Sanya City Science and Technology Innovation Special Project

Key Special Project of University of Sanya

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference45 articles.

1. The contraction mapping principle in almost metric spaces;Bakhtin;Funct. Anal. God. Ped. Instead. Unianowsk.,1989

2. Contraction mappings in b-metric spaces;Czerwik;Acta Math. Univ. Ostrav.,1993

3. KKM mappings in metric type spaces;Khamsi;Nonlinear Anal.,2010

4. Stone-type theorem on b-metric spaces and applications;Tuyen;Topol. Its Appl.,2015

5. Round-off stability of iteration procedures for operators in b-metric spaces;Czerwik;J. Nat. Phys. Sci.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3