LIDAR Point Cloud Augmentation for Dusty Weather Based on a Physical Simulation

Author:

Lian Haojie1ORCID,Sun Pengfei1,Meng Zhuxuan2ORCID,Li Shengze2,Wang Peng1,Qu Yilin34

Affiliation:

1. Key Laboratory of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

2. Academy of Military Science, Beijing 100091, China

3. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

4. Unmanned Vehicle Innovation Center, Ningbo Institute of NPU, Ningbo 315048, China

Abstract

LIDAR is central to the perception systems of autonomous vehicles, but its performance is sensitive to adverse weather. An object detector trained by deep learning with the LIDAR point clouds in clear weather is not able to achieve satisfactory accuracy in adverse weather. Considering the fact that collecting LIDAR data in adverse weather like dusty storms is a formidable task, we propose a novel data augmentation framework based on physical simulation. Our model takes into account finite laser pulse width and beam divergence. The discrete dusty particles are distributed randomly in the surrounding of LIDAR sensors. The attenuation effects of scatters are represented implicitly with extinction coefficients. The coincidentally returned echoes from multiple particles are evaluated by explicitly superimposing their power reflected from each particle. Based on the above model, the position and intensity of real point clouds collected from dusty weather can be modified. Numerical experiments are provided to demonstrate the effectiveness of the method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3