Dynamics of a Higher-Order Three-Dimensional Nonlinear System of Difference Equations

Author:

Hassani Murad Khan1ORCID,Yazlik Yasin1ORCID,Touafek Nouressadat2ORCID,Abdelouahab Mohammed Salah3ORCID,Mesmouli Mouataz Billah4ORCID,Mansour Fatma E.5

Affiliation:

1. Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Nevşehir 50300, Turkey

2. LMAM Laboratory, Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel 18000, Algeria

3. Laboratory of Mathematics and Their Interactions, Abdelhafid Boussouf University Center of Mila, Mila 43000, Algeria

4. Department of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia

5. Department of Physics, College of Science and Arts in Methneb, Qassim University, Methneb 51931, Saudi Arabia

Abstract

In this paper, we study the semi-cycle analysis of positive solutions and the asymptotic behavior of positive solutions of three-dimensional system of difference equations with a higher order under certain parametric conditions. Furthermore, we show the boundedness and persistence, the rate of convergence of the solutions and the global asymptotic stability of the unique equilibrium point of the proposed system under certain parametric conditions. Finally, for this system, we offer some numerical examples which support our analytical results.

Funder

Scientific Research Deanship at University of Ha’il – Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference22 articles.

1. Jones, D., and Sleeman, B. (1983). Differential Equations and Mathematical Biology, George Allen and Unwin.

2. Lakshmikantham, V., and Trigiante, D. (1990). Theory of Difference Equations, Academic Press.

3. A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor;Wang;Ann. Nucl. Energy,2024

4. H1-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems;Zhou;Numer. Algorithms,2023

5. Asymptotic behavior of Levin-Nohel nonlinear difference system with several delays;Mesmouli;AIMS Math.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3