An Algorithm for Computing All Rough Set Constructs for Dimensionality Reduction

Author:

González-Díaz Yanir1ORCID,Martínez-Trinidad José Fco.1ORCID,Carrasco-Ochoa Jesús A.1,Lazo-Cortés Manuel S.2ORCID

Affiliation:

1. Department of Computer Science, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Puebla 72840, Mexico

2. Graduate Division, Tecnológico Nacional de México/IT Tlalnepantla, Tlalnepantla de Baz 54070, Mexico

Abstract

In rough set theory, a construct is an attribute subset with the same ability to discern objects belonging to different classes as the whole set of attributes, while maintaining the similarity between objects belonging to the same class. Although algorithms for reducts computation can be adapted to compute constructs, practical problems exist where these algorithms cannot compute all constructs within a reasonable time frame. Therefore, this paper introduces an algorithm for computing all constructs of a decision system. The results of experiments with various decision systems (both artificial and real-world) suggest that our algorithm is, in most cases, faster than the state-of-the-art algorithms when the simplified binary discernibility–similarity matrix has a density of less than 0.29.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference26 articles.

1. Rough sets;Pawlak;Int. J. Comput. Inf. Sci.,1982

2. Reducts and constructs in classic and dominance-based rough sets approach;Susmaga;Inf. Sci.,2014

3. FPGA supported rough set reduct calculation for big datasets;Kopczynski;J. Intell. Inf. Syst.,2022

4. Raś, Z.W., and Zemankova, M. (1994, January 16–19). Dynamic reducts as a tool for extracting laws from decisions tables. Proceedings of the Methodologies for Intelligent Systems, Charlotte, NC, USA.

5. Stańczyk, U. (2022). Advances in Selected Artificial Intelligence Areas: World Outstanding Women in Artificial Intelligence, Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3