Automatic Recognition of Indoor Fire and Combustible Material with Material-Auxiliary Fire Dataset

Author:

Hou Feifei1ORCID,Zhao Wenqing1,Fan Xinyu1

Affiliation:

1. School of Automation, Central South University, Changsha 410083, China

Abstract

Early and timely fire detection within enclosed spaces notably diminishes the response time for emergency aid. Previous methods have mostly focused on singularly detecting either fire or combustible materials, rarely integrating both aspects, leading to a lack of a comprehensive understanding of indoor fire scenarios. Moreover, traditional fire load assessment methods such as empirical formula-based assessment are time-consuming and face challenges in diverse scenarios. In this paper, we collected a novel dataset of fire and materials, the Material-Auxiliary Fire Dataset (MAFD), and combined this dataset with deep learning to achieve both fire and material recognition and segmentation in the indoor scene. A sophisticated deep learning model, Dual Attention Network (DANet), was specifically designed for image semantic segmentation to recognize fire and combustible material. The experimental analysis of our MAFD database demonstrated that our approach achieved an accuracy of 84.26% and outperformed the prevalent methods (e.g., PSPNet, CCNet, FCN, ISANet, OCRNet), making a significant contribution to fire safety technology and enhancing the capacity to identify potential hazards indoors.

Funder

National Natural Science Foundation of China

Changsha Natural Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3