Accelerating Convergence of Langevin Dynamics via Adaptive Irreversible Perturbations

Author:

Wu Zhenqing1ORCID,Huang Zhejun1ORCID,Wu Sijin12ORCID,Yu Ziying1,Zhu Liuxin1,Yang Lili1

Affiliation:

1. Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, China

2. Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK

Abstract

Irreversible perturbations in Langevin dynamics have been widely recognized for their role in accelerating convergence in simulations of multi-modal distributions π(θ). A commonly used and easily computed standard irreversible perturbation is J∇logπ(θ), where J is a skew-symmetric matrix. However, Langevin dynamics employing a fixed-scale standard irreversible perturbation encounter a trade-off between local exploitation and global exploration, associated with small and large scales of standard irreversible perturbation, respectively. To address this trade-off, we introduce the adaptive irreversible perturbations Langevin dynamics, where the scale of the standard irreversible perturbation changes adaptively. Through numerical examples, we demonstrate that adaptive irreversible perturbations in Langevin dynamics can enhance performance compared to fixed-scale irreversible perturbations.

Funder

Shenzhen Science and Technology Program

SUSTech International Center for Mathematics

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference23 articles.

1. Chen, Y., Chen, J., Dong, J., Peng, J., and Wang, Z. (2019, January 6–9). Accelerating nonconvex learning via replica exchange Langevin diffusion. Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA.

2. Li, X., Wu, Y., Mackey, L., and Erdogdu, M.A. (2019, January 8–14). Stochastic Runge-Kutta accelerates Langevin Monte Carlo and beyond. Proceedings of the Advances in Neural Information Processing Systems 32, Vancouver, BC, Canada.

3. Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A.G. (2020, January 26–30). Cyclical stochastic gradient MCMC for Bayesian deep learning. Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia.

4. Deng, W., Liang, S., Hao, B., Lin, G., and Liang, F. (2022, January 25–29). Interacting contour stochastic gradient Langevin dynamics. Proceedings of the 10th International Conference on Learning Representations, Virtual.

5. Accelerating diffusions;Hwang;Ann. Appl. Probab.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3