On Another Type of Convergence for Intuitionistic Fuzzy Observables

Author:

Čunderlíková Katarína1ORCID

Affiliation:

1. Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia

Abstract

The convergence theorems play an important role in the theory of probability and statistics and in its application. In recent times, we studied three types of convergence of intuitionistic fuzzy observables, i.e., convergence in distribution, convergence in measure and almost everywhere convergence. In connection with this, some limit theorems, such as the central limit theorem, the weak law of large numbers, the Fisher–Tippet–Gnedenko theorem, the strong law of large numbers and its modification, have been proved. In 1997, B. Riečan studied an almost uniform convergence on D-posets, and he showed the connection between almost everywhere convergence in the Kolmogorov probability space and almost uniform convergence in D-posets. In 1999, M. Jurečková followed on from his research, and she proved the Egorov’s theorem for observables in MV-algebra using results from D-posets. Later, in 2017, the authors R. Bartková, B. Riečan and A. Tirpáková studied an almost uniform convergence and the Egorov’s theorem for fuzzy observables in the fuzzy quantum space. As the intuitionistic fuzzy sets introduced by K. T. Atanassov are an extension of the fuzzy sets introduced by L. Zadeh, it is interesting to study an almost uniform convergence on the family of the intuitionistic fuzzy sets. The aim of this contribution is to define an almost uniform convergence for intuitionistic fuzzy observables. We show the connection between the almost everywhere convergence and almost uniform convergence of a sequence of intuitionistic fuzzy observables, and we formulate a version of Egorov’s theorem for the case of intuitionistic fuzzy observables. We use the embedding of the intuitionistic fuzzy space into the suitable MV-algebra introduced by B. Riečan. We formulate the connection between the almost uniform convergence of functions of several intuitionistic fuzzy observables and almost uniform convergence of random variables in the Kolmogorov probability space too.

Funder

VEGA

Operational Programme Integrated Infrastructure

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference24 articles.

1. Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84);Atanassov;Repr. Int. Bioautom.,2016

2. Fuzzy sets;Zadeh;Inf. Control,1965

3. Probability measures on fuzzy sets;Zadeh;J. Math. Anal. Appl.,1968

4. Riečan, B. (2003, January 10–12). A descriptive definition of the probability on intuitionistic fuzzy set. Proceedings of the 3rd Conference of the European Society for Fuzzy Logic and Technology, Zittau, Germany.

5. Probability of Intuitionistic Fuzzy Events;Grzegorzewski;Soft Methods in Probability, Statistics and Data Analysis,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3