CNMF: A Community-Based Fake News Mitigation Framework

Author:

Galal ShaimaaORCID,Nagy NohaORCID,El-Sharkawi Mohamed. E.

Abstract

Fake news propagation in online social networks (OSN) is one of the critical societal threats nowadays directing attention to fake news mitigation and intervention techniques. One of the typical mitigation techniques focus on initiating news mitigation campaigns targeting a specific set of users when the infected set of users is known or targeting the entire network when the infected set of users is unknown. The contemporary mitigation techniques assume the campaign users’ acceptance to share a mitigation news (MN); however, in reality, user behavior is different. This paper focuses on devising a generic mitigation framework, where the social crowd can be employed to combat the influence of fake news in OSNs when the infected set of users is undefined. The framework is composed of three major phases: facts discovery, facts searching and, community recommendation. Mitigation news circulation is accomplished by recruiting a set of social crowd users (news propagators) who are likely to accept posting the mitigation news article. We propose a set of features that identify prospect OSN audiences and news propagators. Moreover, we inspect the variant properties of the news circulation process, such as incentivizing news propagators, determining the required number of news propagators, and the adaptivity of the MN circulation process. The paper pinpoints the significance of facts searching and news propagator’s behavior features introduced in the experimental results.

Publisher

MDPI AG

Subject

Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting users’ future interests on social networks: A reference framework;Information Processing & Management;2024-09

2. CONTAIN: A community-based algorithm for network immunization;Engineering Science and Technology, an International Journal;2024-07

3. A majority-based learning system for detecting misinformation;Behaviour & Information Technology;2024-03-06

4. Concept-drift detection index based on fuzzy formal concept analysis for fake news classifiers;Technological Forecasting and Social Change;2023-09

5. Fake News Detection: A Brief Investigation Into the State-of-The-Art Approaches and A Mixed Language Dataset;2023 International Conference on Digital Applications, Transformation & Economy (ICDATE);2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3