TiO2 Nanotubes with Pt and Pd Nanoparticles as Catalysts for Electro-Oxidation of Formic Acid

Author:

Pisarek MarcinORCID,Kędzierzawski Piotr,Andrzejczuk Mariusz,Hołdyński MarcinORCID,Mikołajczuk-Zychora Anna,Borodziński Andrzej,Janik-Czachor Maria

Abstract

In the present work, the magnetron sputtering technique was used to prepare new catalysts of formic acid electrooxidation based on TiO2 nanotubes decorated with Pt (platinum), Pd (palladium) or Pd + Pt nanoparticles. TiO2 nanotubes (TiO2 NTs) with strictly defined geometry were produced by anodization of Ti foil and Ti mesh in a mixture of glycerol and water with ammonium fluoride electrolyte. The above mentioned catalytically active metal nanoparticles (NPs) were located mainly on the top of the TiO2 NTs, forming ‘rings’ and agglomerates. A part of metal nanoparticles decorated also TiO2 NTs walls, thus providing sufficient electronic conductivity for electron transportation between the metal nanoparticle rings and Ti current collector. The electrocatalytic activity of the TiO2 NTs/Ti foil, decorated by Pt, Pd and/or Pd + Pt NPs was investigated by cyclic voltammetry (CV) and new Pd/TiO2 NTs/Ti mesh catalyst was additionally tested in a direct formic acid fuel cell (DFAFC). The results so obtained were compared with commercial catalyst—Pd/Vulcan. CV tests have shown for carbon supported catalysts, that the activity of TiO2 NTs decorated with Pd was considerably higher than that one decorated with Pt. Moreover, for TiO2 NTs supported Pd catalyst specific activity (per mg of metal) was higher than that for well dispersed carbon supported commercial catalyst. The tests at DFAFC have revealed also that the maximum of specific power for 0.2 Pd/TiO2 catalyst was 70% higher than that of the commercial one, Pd/Vulcan. Morphological features, and/or peculiarities, as well as surface composition of the resulting catalysts have been studied by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and chemical surface analytical methods (X-ray photoelectron spectroscopy—XPS; Auger electron spectroscopy—AES).

Funder

The National Science Centre

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3