Optical Protective Window Design and Material Selection Issues in the Multi-Sensor Electro-Optical Surveillance Systems

Author:

Vujić Saša12,Perić Dragana12ORCID,Livada Branko12ORCID,Radisavljević Miloš12ORCID,Domazet Dragan2

Affiliation:

1. Vlatacom Institute, 11070 Belgrade, Serbia

2. Faculty of Information Technologies, Doctoral Studies in Software Engineering, Belgrade Metropolitan University, 11158 Belgrade, Serbia

Abstract

Multi-sensor imaging systems have a very important role and wide applications in surveillance and security systems. In many applications, it is necessary to use an optical protective window as an optical interface connecting the imaging sensor and object of interest’s space; meanwhile an imaging sensor is mounted in a protective enclosure, providing separation from environmental conditions. Optical windows are often used in various optical and electro-optical systems, fulfilling different sometimes very unusual tasks. There are lots of examples in the literature that define optical window design for targeted applications. Through analysis of the various effects that follow optical window application in connection with imaging systems, we have suggested a simplified methodology and practical recommendation for how to define optical protective window specifications in multi-sensor imaging systems, using a system engineering approach. In addition, we have provided initial set of data and simplified calculation tools that can be used in initial analysis to provide proper window material selection and definition of the specifications of optical protective windows in multi-sensor systems. It is shown that although the optical window design seems as a simple task, it requires serious multidisciplinary approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3