Estimation of Tree Height by Combining Low Density Airborne LiDAR Data and Images Using the 3D Tree Model: A Case Study in a Subtropical Forest in China

Author:

Zhou Xiaocheng,Wang Wenjun,Di Liping,Lu Lin,Guo LiyingORCID

Abstract

In general, low density airborne LiDAR (Light Detection and Ranging) data are typically used to obtain the average height of forest trees. If the data could be used to obtain the tree height at the single tree level, it would greatly extend the usage of the data. Since the tree top position is often missed by the low density LiDAR pulse point, the estimated forest tree height at the single tree level is generally lower than the actual tree height when low density LiDAR data are used for the estimation. To resolve this problem, in this paper, a modified approach based on three-dimensional (3D) parameter tree model was adopted to reconstruct the tree height at the single tree level by combining the characteristics of high resolution remote sensing images and low density airborne LiDAR data. The approach was applied to two coniferous forest plots in the subtropical forest region, Fujian Province, China. The following conclusions were reached after analyzing the results: The marker-controlled watershed segmentation method is able to effectively extract the crown profile from sub meter-level resolution images without the aid of the height information of LiDAR data. The adaptive local maximum method satisfies the need for detecting the vertex of a single tree crown. The improved following-valley approach is available for estimating the tree crown diameter. The 3D parameter tree model, which can take advantage of low-density airborne LiDAR data and high resolution images, is feasible for improving the estimation accuracy of the tree height. Compared to the tree height results from only using the low density LiDAR data, this approach can achieve higher estimation accuracy. The accuracy of the tree height estimation at the single tree level for two test areas was more than 80%, and the average estimation error of the tree height was 0.7 m. The modified approach based on the three-dimensional parameter tree model can effectively increase the estimation accuracy of individual tree height by combining the characteristics of high resolution remote sensing images and low density airborne LiDAR data.

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3