Monitoring and Management of the Pine Processionary Moth in the North-Western Italian Alps

Author:

Ferracini ChiaraORCID,Saitta Valerio,Pogolotti Cristina,Rollet Ivan,Vertui Flavio,Dovigo Luca

Abstract

The pine processionary moth (PPM), Thaumetopoea pityocampa (Denis and Schiffermüller, 1775) (Lepidoptera, Notodontidae), is considered one of the main insect defoliators of conifers in Southern Europe and North Africa. The species is oligophagous on pines and cedars in Mediterranean countries. This 6-year investigation (2014–2019), carried out in Aosta Valley (NW Italy), on Pinus sylvestris L. aimed to: (i) Monitor the PPM population with pheromone-baited funnel traps; (ii) assess the infestation index (0–5 classes) according to the degree of defoliation; and (iii) apply control strategies, namely Bacillus thuringiensis var. kurstaki (Btk) and mating disruption (MD). In total, 9618 ha were visually monitored and assigned an infestation index. The percentage of woodland stands that were strongly defoliated by PPM (infestation index ≥ 3) increased progressively between 2015 and 2016, affecting from 8% to 19% of the total area monitored; this area decreased to 16% and 13% in 2017 and 2018, respectively, followed by an abrupt decline to 4% in 2019. Both Btk applications and mating disruption significantly reduced the infestation. Where Btk was applied, the rate of larval mortality ranged from 79.47% to 98.43%; conversely, in the control plots, the larval mortality was, on average, 1.56%. The mean number of PPM males captured in traps was significantly lower in the plots where MD was performed, ranging from 8.36 ± 2.37 to 13.47 ± 4.68. The mean number of males captured in the control plots was, on average, 119.16 ± 12.68. The total number of nests recorded per tree was significantly lower in MD plots, ranging from 0.41 ± 0.05 to 0.94 ± 0.14. In the control plots, there were, on average, 4.37 ± 0.76 nests per tree. As already documented for several defoliating forestry insect pests, both Btk and mating disruption proved effective in controlling PPM infestations, and thus, microbial insecticides should be strongly encouraged and adopted by forest managers.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3