Nitrogen-Rich Triazine-Based Covalent Organic Frameworks as Efficient Visible Light Photocatalysts for Hydrogen Peroxide Production

Author:

Yang Shu12,Zhi Keke34ORCID,Zhang Zhimin12,Kerem Rukiya12,Hong Qiong12,Zhao Lei12,Wu Wenbo1,Wang Lulu12,Wang Duozhi12

Affiliation:

1. College of Chemistry, Xinjiang University, Urumqi 830017, China

2. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Urumqi 830017, China

3. College of Engineering, China University of Petroleum—Beijing at Karamay, Karamay 834000, China

4. State Key Laboratory of Heavy Oil Processing—Karamay Branch, Karamay 834000, China

Abstract

Covalent organic frameworks (COFs) have been widely used in photocatalytic hydrogen peroxide (H2O2) production due to their favorable band structure and excellent light absorption. Due to the rapid recombination rate of charge carriers, however, their applications are mainly restricted. This study presents the design and development of two highly conjugated triazine-based COFs (TBP-COF and TTP-COF) and evaluates their photocatalytic H2O2 production performance. The nitrogen-rich structures and high degrees of conjugation of TBP-COF and TTP-COF facilitate improved light absorption, promote O2 adsorption, enhance their redox power, and enable the efficient separation and transfer of photogenerated charge carriers. There is thus an increase in the photocatalytic activity for the production of H2O2. When exposed to 10 W LED visible light irradiation at a wavelength of 420 nm, the pyridine-based TTP-COF produced 4244 μmol h−1 g−1 of H2O2 from pure water in the absence of a sacrificial agent. Compared to TBP-COF (1882 μmol h−1 g−1), which has a similar structure but lacks pyridine sites, TTP-COF demonstrated nearly 2.5 times greater efficiency. Furthermore, it exhibited superior performance compared to most previously published nonmetal COF-based photocatalysts.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

PhD Research Start up Foundation of Xinjiang University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3