Effects of the ZrO2 Crystalline Phase and Morphology on the Thermocatalytic Decomposition of Dimethyl Methylphosphonate

Author:

Wang Xuwei12,Sun Peng12,Zhao Ziwang2,Liu Yimeng2,Zhou Shuyuan2,Yang Piaoping1,Dong Yanchun2

Affiliation:

1. Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

2. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

Abstract

Thermocatalytic decomposition is an efficient purification technology that is potentially applicable to degrading chemical warfare agents and industrial toxic gases. In particular, ZrO2 has attracted attention as a catalyst for the thermocatalytic decomposition of dimethyl methylphosphonate (DMMP), which is a simulant of the nerve gas sarin. However, the influence of the crystal phase and morphology on the catalytic performance of ZrO2 requires further exploration. In this study, monoclinic- and tetragonal-phase ZrO2 (m- and t-ZrO2, respectively) with nanoparticle, flower-like shape and hollow microsphere morphologies were prepared via hydrothermal and solvothermal methods, and their thermocatalytic decomposition of DMMP was systematically investigated. For a given morphology, m-ZrO2 performed better than t-ZrO2. For a given crystalline phase, the morphology of hollow microspheres resulted in the longest protection time. The exhaust gases generated by the thermocatalytic decomposition of DMMP mainly comprised H2, CO2, H2O and CH3OH, and the by-products were phosphorus oxide species. Thus, the deactivation of ZrO2 was attributed to the deposition of these phosphorous oxide species on the catalyst surface. These results are expected to help guide the development of catalysts for the safe disposal of chemical warfare agents.

Funder

National Natural Science Foundation of China

Fundamental Research Funds from the State Key Laboratory of NBC Protection for Civilian

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3