High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting

Author:

Yan Fei1,Zhao Junhao1,Li Fangming1ORCID,Chu Yiyao1,Du Hengxu1,Sun Minzheng1,Xi Ziyue1,Du Taili12ORCID,Xu Minyi13ORCID

Affiliation:

1. Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Marine Engineering College, Dalian Maritime University, Dalian 116026, China

2. Collaborative Innovation Research Institute of Autonomous Ship, Dalian Maritime University, Dalian 116026, China

3. State Key Laboratory of Maritime Technology and Safety, Dalian 116026, China

Abstract

Wind energy holds potential for in-situ powering large-scale distributed wireless sensor nodes (WSNs) in the Internet of Things (IoT) era. To achieve high performance in wind energy harvesting, a coaxial counter-rotating triboelectric nanogenerator with lift–drag hybrid blades, termed CCR-TENG, has been proposed. The CCR-TENG, which can work in non-contact and soft-contact modes, realizes low-speed wind energy harvesting through a combination of counter-clockwise rotating lift-type blades and clockwise rotating drag-type blades. Non-contact CCR-TENG realizes low-speed wind energy harvesting at wind speeds as low as 1 m/s. The output of a CCR-TENG, working in soft-contact mode, achieves 41% promotion with a maximum short-circuit current of 0.11 mA and a peak surface power density of 6.2 W/m2 with two TENGs connected in parallel. Furthermore, the power density per unit of wind speed achieves 746 mW/m3·s/m. Consequently, two fluorescent lamps were successfully illuminated and six temperature sensors were continuously lit by the CCR-TENG. The reported CCR-TENG significantly improves low-speed environmental wind energy utilization and demonstrates broad application prospects for in-situ power supply of distributed wireless transmission devices and sensors in the era of the IoT.

Funder

the Transportation Industry Key Science and Technology Project List Item of the China Ministry of Transport

the Dalian Outstanding Young Scientific and Technological Talents Project

Application Research Program of Liaoning Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3