The Effects of Incorporating Nanoclay in NVCL-NIPAm Hydrogels on Swelling Behaviours and Mechanical Properties

Author:

Tie Billy Shu Hieng1ORCID,Manaf Eyman2ORCID,Halligan Elaine1,Zhuo Shuo1ORCID,Keane Gavin3,Geever Joseph2,Geever Luke4

Affiliation:

1. Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland

2. Department of Mechanical, Polymer Engineering & Design, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland

3. Centre for Industrial Service & Design, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland

4. Applied Polymer Technologies Gateway, Materials Research Institute, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland

Abstract

Following the formulation development from a previous study utilising N-vinylcaprolactam (NVCL) and N-isopropylacrylamide (NIPAm) as monomers, poly(ethylene glycol) dimethacrylate (PEGDMA) as a chemical crosslinker, and Irgacure 2959 as photoinitiator, nanoclay (NC) is now incorporated into the selected formulation for enhanced mechanical performance and swelling ability. In this research, two types of NC, hydrophilic bentonite nanoclay (NCB) and surface-modified nanoclay (NCSM) of several percentages, were included in the formulation. The prepared mixtures were photopolymerised, and the fabricated gels were characterised through Fourier transform infrared spectroscopy (FTIR), cloud-point measurements, ultraviolet (UV) spectroscopy, pulsatile swelling, rheological analysis, and scanning electron microscopy (SEM). Furthermore, the effect of swelling temperature, NC types, and NC concentration on the hydrogels’ swelling ratio was studied through a full-factorial design of experiment (DOE). The successful photopolymerised NC-incorporated NVCL-NIPAm hydrogels retained the same lower critical solution temperature (LCST) as previously. Rheological analysis and SEM described the improved mechanical strength and polymer orientation of gels with any NCB percentage and low NCSM percentage. Finally, the temperature displayed the most significant effect on the hydrogels’ swelling ability, followed by the NC types and NC concentration. Introducing NC to hydrogels could potentially make them suitable for applications that require good mechanical performance.

Funder

Technological University of the Shannon: Midlands Midwest, Presidents Seed Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3