Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells

Author:

Morales Miguel12ORCID,Rezayat Mohammad12ORCID,García-González Sandra12,Mateo Antonio12ORCID,Jiménez-Piqué Emilio12ORCID

Affiliation:

1. Structural Integrity and Materials Reliability Centre (CIEFMA), Department of Materials Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain

2. Barcelona Research Center in Multiscale Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain

Abstract

The development of direct dimethyl ether (DME) solid oxide fuel cells (SOFCs) has several drawbacks, due to the low catalytic activity and carbon deposition of conventional Ni–zirconia-based anodes. In the present study, the insertion of 2.0 wt.% Ru-Ce0.7Zr0.3O2−δ (ruthenium–zirconium-doped ceria, Ru-CZO) as an anode catalyst layer (ACL) is proposed to be a promising solution. For this purpose, the CZO powder was prepared by the sol–gel synthesis method, and subsequently, nanoparticles of Ru (1.0–2.0 wt.%) were synthesized by the impregnation method and calcination. The catalyst powder was characterized by BET-specific surface area, X-ray diffraction (XRD), field emission scanning electron microscopy with an energy-dispersive spectroscopy detector (FESEM-EDS), and transmission electron microscopy (TEM) techniques. Afterward, the catalytic activity of Ru-CZO catalyst was studied using DME partial oxidation. Finally, button anode-supported SOFCs with Ru-CZO ACL were prepared, depositing Ru-CZO onto the anode support and using an annealing process. The effect of ACL on the electrochemical performance of cells was investigated under a DME and air mixture at 750 °C. The results showed a high dispersion of Ru in the CZO solid solution, which provided a complete DME conversion and high yields of H2 and CO at 750 °C. As a result, 2.0 wt.% Ru-CZO ACL enhanced the cell performance by more than 20% at 750 °C. The post-test analysis of cells with ACL proved a remarkable resistance of Ru-CZO ACL to carbon deposition compared to the reference cell, evidencing the potential application of Ru-CZO as a catalyst as well as an ACL for direct DME SOFCs.

Funder

Agency for Administration of University and Research

Publisher

MDPI AG

Reference68 articles.

1. (2004). Fuel Cell Handbook, Lulu Press. [7th ed.].

2. Larminie, J., and Dicks, A. (2003). Fuel Cell Systems Explained, Wiley. [2nd ed.].

3. Chen, W. (2020). Design and Operation of Solid Oxide Fuel Cells, Academic Press.

4. (2023, November 24). E4tech Fuel Cell Industry Review 2021. Available online: https://fuelcellindustryreview.com/.

5. Power Generation Characteristics of SOFCs for Alcohols and Hydrocarbon-Based Fuels;Sasaki;ECS Proc. Vol.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3