Dissolution and Solubility of the Calcite–Otavite Solid Solutions [(Ca1−xCdx)CO3] at 25 °C

Author:

Ma Chengyou,Xu Fan,Zhu ZongqiangORCID,Yang Hongqu,Nong Peijie,Kang Zhiqiang,Tang ShenORCID,Zhang Lihao,Zhu YinianORCID

Abstract

A complete series of the calcite–otavite solid solutions [(Ca1−xCdx)CO3] were prepared, and their dissolution processes lasting nine months were experimentally investigated. For the dissolution in the N2-degassed water, the Ca concentrations of the aqueous phases increased up to the steady states after 5040 h of dissolution, and the Cd concentrations of the aqueous phases increased up to the highest values and then decreased gradually to the steady states of 0.017–6.476 μmol/L after 5040 h of dissolution. For the dissolution in the CO2-saturated water, the Ca and Cd concentrations of the aqueous phases increased up to the peak values and then decreased gradually to the steady states of 0.94–0.46 mmol/L and 0.046–9.643 μmol/L after 5040 h of dissolution, respectively. For the dissolution in the N2-degassed water at 25 °C, the mean solubility products (log Ksp) and the Gibbs free energies of formation (ΔGfθ) were estimated to be −8.45–−8.42 and −1129.65–−1129.48 kJ/mol for calcite [CaCO3] and −11.62–−11.79 and −671.81–−672.78 kJ/mol for otavite [CdCO3], respectively. Generally, the log Ksp values decreased non-linearly, and the ΔGfθ values increased linearly with the increasing Cd/(Ca+Cd) mole ratio (XCd) of the (Ca1−xCdx)CO3 solid solutions. In the Lippmann diagrams constructed for the sub-regular (Ca1−xCdx)CO3 solid solutions with the estimated Guggenheim coefficients a0 = −0.84 and a1 = −3.80 for the dissolution in the N2-degassed water or a0 = −1.12 and a1 = −3.83 for the dissolution in the CO2-saturated water, the (Ca1−xCdx)CO3 solid solutions dissolved incongruently, moved progressively up to the quasi-equilibrium curves for otavite and then along the quasi-equilibrium curve from right to left, approached the solutus curve and finally reached the minimum stoichiometric saturation curve for calcite. The considerably Cd-poor aqueous phases were finally in equilibrium with the CdCO3-rich solid phases.

Funder

National Natural Science Foundation of China

Science & Technology Planning Projects of Guangxi

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3