Genetic Association between Granites and Mineralization at the Gindi Akwati Cassiterite–Sulfide Deposit, North-Central Nigeria: Insights from Mineralogy, Fluid Inclusions, and Sulfur Isotopes

Author:

Amuda Abdulgafar Kayode,Li Shuang,Yang Xiaoyong,Cao JingyaORCID,Faisal Mohamed

Abstract

The cassiterite–sulfide mineralization occurs within quartz veins and greisenized Precambrian Older Granite around the Gindi Akwati region at the Ropp complex’s western boundary, north-central Nigeria. The intrusion of Jurassic Younger granite porphyry sheared the marginal parts of the Older Granite and the mylonitized zone created pathways for fluids that escaped during the late-stage consolidation of Jurassic biotite granite. The biotite granites are highly differentiated (K/Rb < 200), peraluminous (A/CNK > 1), high-K, and have high Sn concentrations (average = 117 ppm). The intrusion of Jurassic granite porphyry forced Older Granite interaction with ore-bearing fluid that escaped from Jurassic biotite granite under low oxygen fugacity at or below the NNO buffer. The above fluid–rock interaction caused mass changes in host granite during greisenization and redistributed ores in the vicinity of the shears. This suggests that chloride ions take the form of significant complex-forming ligands and efficiently sequestrate, transport, and deposit ore metals (Sn, Zn, Fe, and Cu) locally within the greisenized granites and quartz veins. The redox potential of the ores probably gave a false impression of metal zoning with a relatively higher abundance of the oxide ore than the sulfides at the surface. The alteration mineralogy (quartz-, topaz-, lepidolite-, and fluorite-bearing assemblages) coupled with S isotope and fluid inclusion systematic data suggests the hydrothermal history of “greisens” and veins started with hot (homogenization temperature ≥300 °C), low to moderate salinity (average = 4.08 wt. % NaCl), low density (≤0.6 g/cm3) fluids and ≥ 200 bar trapping pressure. The sulfide isotopic composition (δ34SV-CDT = −1.30 to + 0.87 ‰) is very similar to typical magmatic fluids, indicating late-magmatic to early post-magmatic models of mineralization related to the anorogenic granite intrusions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3