Origin of the Bleaching in Lower Cretaceous Continental Red Beds in the Uragen Zn–Pb Deposit, Xinjiang, NW China, and Its Implications for Zn–Pb Mineralization

Author:

Gao RongzhenORCID,Xue Chunji,Dai Junfeng,Man Ronghao

Abstract

The Uragen giant sandstone-hosted Zn–Pb deposit has a proven reserve of 5.90 Mt metals in the southern ore zone and potentially 10 Mt metals for the whole deposit, and orebodies are strictly confined to the bleached clastic rocks of the Lower Cretaceous red beds. The bleaching has been used to guide lead–zinc exploration; however, its nature and origin, as well as the relationship with Zn–Pb mineralization, remains unclear, although it is closely related to regional oil–gas infillings. Detailed field investigation and petrographic observation, TESCAN-integrated mineral analyzer (TIMA), and X-ray fluorescence (μ-XRF) analysis of the red and bleached sandstone at the same sedimentary layer demonstrate that the bleaching is mainly caused by the reductive dissolution of hematite pigment, which probably resulted from the interaction with H2S formed by in situ sulfate reduction during hydrocarbon migration. The calcite cements in the bleached sandstones show δ13C and δ18O values of −5.36~−5.94‰ and 20.94~27.91‰, respectively, and these samples fall close to the evolution line of decarboxylation of organic matter in δ13C-δ18O diagram, also suggesting a genetic relationship between the bleaching and hydrocarbon-bearing fluids. Petrol–mineral composition changes and sulfide characteristics of red, bleached, mineralized zones, as well as pyrite locally replaced by coarse-grained galena in the mineralized zone, imply that the bleaching may occurred before Zn–Pb mineralization. Mass balance calculation and μ-XRF analysis indicate that large amounts of Fe and minor Zn were extracted from red beds with little or no sulfates; however, the red beds with abundant sulfates may be a sink for leached ore metals during the bleaching process. We therefore propose that the former accumulations of iron sulfides and reduced sulfur in the bleached zones may provide an ideal chemical trap for later Zn–Pb mineralization, and the bleached zones with high ∑S contents are the favorable prospective targets of the Uragen-style sandstone-hosted Zn–Pb deposits.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference59 articles.

1. Subdivisions of the Central-East Asia Multi-Energy Minerals Metallogenetic Domain and Types of Those Basins

2. Types of basin fluids, mechanism of discolored alterations and metal mineralizations of glutenite-type Cu-Pb-Zn-U deposits in intercontinental red-bed basin of the western Tarim basin;Fang;J. Earth Sci. Environ.,2017

3. Mosaic tectonics of Mesozoic to Cenozoic basin-mountain-plateau in the western Tarim basin: Glutenite-type Cu-Pb-Zn-celesite-U-coal metallogenic system;Fang;J. Earth Sci. Environ.,2018

4. Mesozoic-Cenozoic sedimentary basin, foreland fold-and-thrust mineralization regularities of copper-lead-zinc-celesite-uranium-cocal in Wulagen, Xinjiang, Chian;Fang;Geotecton. Metallog.,2020

5. Accumulation system of cohabitating multi-energy minerals and their comprehensive exploration in sedimentary basin-a case study of Ordos basin, NW China;Wang;Acta Geol. Sin.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3