Abstract
Clogging is inevitable when membranes with 0.45 µm pore size are used for the separation of particulates from dissolved/colloidal forms in river water. This can lead to a shift in water quality assessment and evaluation of geochemical fluxes. We studied the influence of clogging on the concentration of trace elements, major anions, nitrate, and dissolved organic carbon (DOC) in the filtrates after a sequential pass from 0.1 to 0.5 L of river water samples through the same 47 mm membrane with 0.45 µm pore size. These experiments were carried out for the typical boreal rivers of the Russian Far East, including the biggest one, Amur R., with different quantities of suspended solids (SS) and anthropogenic load. The concentration of the major anions, nitrate, Si, DOC, and such trace elements as Li, B, Ni, Cu, As, Sr, Rb, Mo, Ba, U did not depend on the water volume filtered. However, filterable Al, Fe, Ti, Pb, Mn, Co, and most REEs showed a notable decrease in concentration at an increase in volume filtered, at more than 100–200 mL of river water. Clogging membranes with retention of colloids <0.45 µm was suggested as a reason for such a decrease. The quantity of suspended solids and their grain size are the major factors that control clogging itself. Still, the influence of clogging on the concentration of filterable forms depends on the share of coarse colloidal forms. Moreover, retention of colloids <0.45 µm by the clogged membrane can bias the assessment of particulate forms. Surpluses of particulate Fe, Al, Mn, Co due to clogging decline from 13–26% to 2–6% of suspended forms of these metals at the growth of SS in river waters from 10 mg/L to more than 50 mg/L. For particulate REEs, the share due to membrane clogging varies non-linearly from 2–9% to 23–39%, depending on the initial concentration of filterable forms of REEs in the river waters.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献