Selective Leaching of Valuable Metals from Spent Fluid Catalytic Cracking Catalyst with Oxalic Acid

Author:

Zheng Dalong,Zhang Yimin,Liu Tao,Huang Jing,Cai Zhenlei,Zhang Ruobing

Abstract

The problem of spent fluid catalytic cracking (SFCC) catalyst resource utilization, draws more and more attention to system analysis. SFCC was leached in an oxalic solution for comprehensive utilization. The results showed that for a D50 ≤ 17.34 μm, the catalyst leached for 240 min at 95 °C in the presence of a 2 mol/L oxalic acid solution, and the extent of leaching of V, Ni, Fe, and Al was 73.4%, 32.4%, 48.2%, and 36.8%, respectively. Studies on the occurrence state of the main ions (V, Ni, Fe, and Al) in the leaching solution were presented. Additionally, the separation of the main ions from such a solution by the “solvent extraction-stripping-hydrothermal precipitation-comprehensive recovery of valuable metal” process was studied. The immobilization rates of vanadium and nickel in geopolymers can be obtained using the toxicity characteristic leaching procedure (TCLP) test, and the geopolymers prepared by SFCC leaching residues can be considered a non-hazardous material. A process diagram of the comprehensive utilization of SFCC catalysts is presented.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3