Abstract
The characterization and leaching mechanism of REEs from phosphogypsum (PG) in HCl was studied in-depth. REEs contained in the PG were 208 ppm, of which Y, La, Ce, and Nd were the four most abundant elements. The modes of occurrence of rare earth elements (REEs) in the PG were quantified using the sequential chemical extraction (SCE) method. Among the five REE occurrence species, the metal oxide form accounted for the largest proportion, followed by the residual, organic matter, and ion-exchangeable fractions, and REEs bound to carbonates were the least. From the comparison of the distributions of REEs and calcium in different occurrence states, it can be determined that REEs contained in the PG were mainly present in the residue state (existed in the gypsum lattice) and the metal oxide state (easily leached). The leaching results show that the suitable leaching conditions were acid concentration of 1.65 mol/L, S/L ratio of 1/10, and reaction temperature of 60 °C. At the condition, the maximum leaching efficiency for ∑REE was 65.6%, of which the yttrium leaching rate was the highest and reached 73.8%. Importantly, A new kinetic equation based on the cylindrical shrinking core model (SCM) was deduced and could well describe REE leaching process from PG. The apparent activation energy for ∑REE leaching was determined to be 20.65 kJ·mol−1.
Funder
National Natural Science Foundation of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献