Ductile vs. Brittle Strain Localization Induced by the Olivine–Ringwoodite Transformation

Author:

Gasc JulienORCID,Gardonio Blandine,Deldicque Damien,Daigre Clémence,Moarefvand Arefeh,Petit Léo,Burnley PamelaORCID,Schubnel Alexandre

Abstract

As it descends into the Earth’s mantle, the olivine that constitutes the lithosphere of subducting slabs transforms to its high-pressure polymorphs, wadsleyite and ringwoodite, in the so-called transition zone. These transformations have important rheological consequences, since they may induce weakening, strain localization, and, in some cases, earthquakes. In this study, germanium olivine (Ge-olivine) was used as an analogue material to investigate the rheology of samples undergoing the olivine–ringwoodite transformation. Ge-olivine adopts a ringwoodite structure at pressures ~14 GPa lower than its silicate counterpart does, making the transformation accessible with a Griggs rig. Deformation experiments were carried out in a new-generation Griggs apparatus, where micro-seismicity was recorded in the form of acoustic emissions. A careful analysis of the obtained acoustic signal, combined with an extensive microstructure analysis of the recovered samples, provided major insights into the interplay between transformation and deformation mechanisms. The results show that significant reaction rates cause a weakening via the implementation of ductile shear zones that can be preceded by small brittle precursors. When kinetics are more sluggish, mechanical instabilities lead to transformational faulting, which stems from the unstable propagation of shear bands localizing both strain and transformation. The growth of these shear bands is self-sustained thanks to the negative volume change and the exothermic nature of the reaction, and leads to dynamic rupture, as attested by the acoustic emissions recorded. These micro-earthquakes share striking similarities with deep focus earthquakes, which may explain several seismological observations such as magnitude frequency relations and the occurrence of deep repeating earthquakes and foreshocks.

Funder

Institut National des Sciences de l'Univers

European Research Council

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3