Abstract
The Hetaoping ore district in Baoshan City, Yunnan Province, is one of the major localities of Pb-Zn polymetallic skarn deposits in China, where geophysical and geochemical surveys play an important role in exploring Pb-Zn polymetallic mineral resources. Based on the exploration and prospecting carried out at the periphery of the Hetaoping Pb-Zn polymetallic deposit, this study proposed an aero-ground joint exploration method to determine the metallogenic model of distal skarns in the Hetaoping ore district, achieving ideal prospecting results. The steps of this method are as follows. First, the locations of ore-induced anomalies were determined using high-amplitude aeromagnetic anomalies. Then, the ore-induced anomalies were determined to be anomalies of Pb-Zn polymetallic deposits through geochemical surveys of soil samples and ground geophysical surveys. Based on these data, a quantitative analysis and metallogenic potential assessment of ore bodies and their surrounding rocks were conducted using the interactive 2.5D magnetic inversion. In addition, the 3D inversion of regional gravity data was also performed in order to determine the spatial location of the deep magma chamber. Accordingly, the metallogenic geological process in this area was analyzed by determining the spatial morphology of the deep magma chamber, and a prospecting model of the Pb-Zn polymetallic deposits was finally built. The results show that the aero-ground joint exploration method, which first conducts a rapid scanning survey using the aeromagnetic method and then locates, distinguishes, and assesses significant aeromagnetic anomalies by combining comprehensive verification means such as ground geophysical, geochemical, and geological surveys, is efficient and economical. This study will guide regional metallogenic research and the exploration and prospecting of Pb-Zn polymetallic deposits.
Funder
the National Basic Research Program of China
Subject
Geology,Geotechnical Engineering and Engineering Geology