The Calcite-Dolomite Solvus Temperature and T-X(CO2) Evolution in High-Grade Impure Marble from Thongmön Area, Central Himalaya: Implications for Carbon Cycling in Orogenic Belts

Author:

Chen Xueqian,Zhang Lifei,Zhang Guibin,Lü Zeng

Abstract

Impure dolomitic marble from the Great Himalayan Sequences (GHS) in Thongmön area, central Himalaya, is first systematically reported here concerning its petrographic features, textural relations, and fluid evolution. The Thongmön impure marble is characterized by the assemblage of calcite + dolomite + forsterite + spinel + phlogopite + clinohumite ± diopside ± retrograde serpentine. Three groups of calcite and dolomite occurring both as inclusions and in the matrix were identified: group I is represented by relatively magnesium-rich calcite (Cal) (CalI:XMg = 0.10–0.15) and almost pure dolomite (Dol) (DolI:XMg = 0.47–0.48), corresponding to the Cal-Dol solvus temperatures of 707–781 °C; group II is characterized by vermicular dolomite exsolutions (DolII:XMg = 0.45–0.46) in Mg-rich calcite and Mg-poor calcite (CalII:XMg = 0.05–0.08) adjacent to DolII, and the recorded solvus temperatures are 548–625 °C; group III is represented by nearly pure calcite (CalIII:XMg = 0.003–0.02) and Ca-rich dolomite in the matrix (DolIII:XMg = 0.33–0.44). Isobaric T-X(CO2) pseudosection at a peak pressure of 15 kbar in the system K2O-CaO-MgO-Al2O3-FeO-SiO2-H2O-CO2 suggests that the peak fluid composition of the Thongmön forsterite marble is restricted to X(CO2) < 0.04 at T > 780 °C due to a potential infiltration event of H2O-rich fluid. Alternatively, the forsterite marble is a retrograde product subordinated to the GHS exhumation process, and its fluid composition is relatively CO2-rich (0.6 < X(CO2) < 0.8 at 5 kbar, 750 °C) at a nearly isothermal decompression stage. In either case, we suggest that the carbon flux contributed by metacarbonate rocks in an orogen setting to the global carbon cycling must be considered.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3