Abstract
A single qubit may be represented on the Bloch sphere or similarly on the 3-sphere S 3 . Our goal is to dress this correspondence by converting the language of universal quantum computing (UQC) to that of 3-manifolds. A magic state and the Pauli group acting on it define a model of UQC as a positive operator-valued measure (POVM) that one recognizes to be a 3-manifold M 3 . More precisely, the d-dimensional POVMs defined from subgroups of finite index of the modular group P S L ( 2 , Z ) correspond to d-fold M 3 - coverings over the trefoil knot. In this paper, we also investigate quantum information on a few ‘universal’ knots and links such as the figure-of-eight knot, the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available on the software SnapPy. Further connections between POVMs based UQC and M 3 ’s obtained from Dehn fillings are explored.
Funder
Agence Nationale de la Recherche
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference48 articles.
1. Three-Dimensional Geometry and Topology;Thurston,1997
2. Fault-tolerant quantum computation by anyons
3. Non-Abelian anyons and topological quantum computation
4. Topological Quantum Computation;Wang,2010
5. Introduction to Topological Quantum Computation;Pachos,2012
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献