Abstract
Demonstrating the striking symmetry between calculus and q-calculus, we obtain q-analogues of the Bateman, Pasternack, Sylvester, and Cesàro polynomials. Using these, we also obtain q-analogues for some of their generating functions. Our q-generating functions are given in terms of the basic hypergeometric series 4 ϕ 5 , 5 ϕ 5 , 4 ϕ 3 , 3 ϕ 2 , 2 ϕ 1 , and q-Pochhammer symbols. Starting with our q-generating functions, we are also able to find some new classical generating functions for the Pasternack and Bateman polynomials.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference14 articles.
1. Hypergeometric Orthogonal Polynomials and Their q-Analogues;Koekoek,2010
2. Basic Hypergeometric Series;Gasper,2004
3. Two systems of polynomials for the solution of Laplace’s integral equation
4. Sur la valeur moyenne des coefficients dans le développement d’un déterminant gauche ou symétrique d’un ordre infiniment grand et sur les déterminants doublement gauches;Sylvester;C. R. de l’Académie des Sci.,1879
5. Higher Transcendental Functions;Erdélyi,1981
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献