Hyperspectral Face Recognition with Patch-Based Low Rank Tensor Decomposition and PFFT Algorithm

Author:

Wu MengmengORCID,Wei Dongmei,Zhang Liren,Zhao Yuefeng

Abstract

Hyperspectral imaging technology with sufficiently discriminative spectral and spatial information brings new opportunities for robust facial image recognition. However, hyperspectral imaging poses several challenges including a low signal-to-noise ratio (SNR), intra-person misalignment of wavelength bands, and a high data dimensionality. Many studies have proven that both global and local facial features play an important role in face recognition. This research proposed a novel local features extraction algorithm for hyperspectral facial images using local patch based low-rank tensor decomposition that also preserves the neighborhood relationship and spectral dimension information. Additionally, global contour features were extracted using the polar discrete fast Fourier transform (PFFT) algorithm, which addresses many challenges relevant to human face recognition such as illumination, expression, asymmetrical (orientation), and aging changes. Furthermore, an ensemble classifier was developed by combining the obtained local and global features. The proposed method was evaluated by using the Poly-U Database and was compared with other existing hyperspectral face recognition algorithms. The illustrative numerical results demonstrate that the proposed algorithm is competitive with the best CRC_RLS and PLS methods.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advancements in Hyperspectral Face Recognition: A Review;2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT);2022-10-03

2. Unsupervised Clustering for Hyperspectral Images;Symmetry;2020-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3