Modeling the Long-Term Variability in the Surfaces of Three Lakes in Morocco with Limited Remote Sensing Image Sources

Author:

Haidu Ionel1ORCID,El Orfi Tarik2,Magyari-Sáska Zsolt3ORCID,Lebaut Sébastien1ORCID,El Gachi Mohamed2ORCID

Affiliation:

1. Laboratory LOTERR-EA7304, University of Lorraine, 57045 Metz, France

2. “DPRP” Laboratory, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco

3. Geography Department of Extensions, Faculty of Geography, Babes-Bolyai University, 400006 Cluj-Napoca, Romania

Abstract

Satellite imagery has become a widespread resource for modeling variability in lake surfaces. However, the extended monitoring of a lake’s perimeter faces significant challenges due to atmospheric obstacles that cannot be rectified. Due to the atmosphere’s everchanging opacity, only half of the acquired satellite images have reliable qualitative accuracy making it possible to identify a lake’s contour. Consequently, approximately 50% of the monthly lake outline values can be determined using remote sensing methods, leaving the remaining 50% unknown. This situation is applicable to three lakes in Morocco (Abakhan, Ouiouan, and Tiglmanine), the subjects of the current research for the period between 1984 and 2022. What can we do if, during a period of time in which we monitored the evolution of the surface of a lake by satellite means, we obtain only about 50% of the possible images? Shall we just settle for this and stop the analysis? Although it may be challenging to believe, the present study introduces two statistical methods for interpolating and validating the monthly values of the lake outline: the iterative ratio method based on the autocorrelation of the monthly water balance and the Kalman filter. We estimated the reconstruction errors of the missing values and validated the methodology using an inverse philosophy, reconstructing the initial data from the table of the simulation results. Given that the difference between the initial values and the reconstructed initial values resembles white noise or an AR (1) process with a low coefficient, we deemed the methodological approach acceptable. Several comparison criteria between the two interpolation methods were employed, yet determining the more appropriate one remains challenging. Based on our surface reconstruction method, Lake Abakhan, with an average area of 22 hectares, experienced significant fluctuations, ranging from a maximum of 34 hectares in 2010 to a minimum of 0.8 hectares in 2022. Lake Ouiouan, with an average area of 14 hectares, displayed much lower variation, with a maximum of 17 hectares in 2020 and a minimum of 6.5 hectares in 1988. Lake Tiglmanine showed a pattern similar to that of Lake Abakhan but with less pronounced fluctuations. With an average area of 6.1 hectares, its maximum was 9.2 hectares in 2011 and its minimum was 4.1 hectares in 1984.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3