Cross-Hopping Graph Networks for Hyperspectral–High Spatial Resolution (H2) Image Classification

Author:

Chen Tao1,Wang Tingting1,Chen Huayue123,Zheng Bochuan123,Deng Wu4ORCID

Affiliation:

1. School of Computer, China West Normal University, Nanchong 637002, China

2. Institute of Artificial Intelligence, China West Normal University, Nanchong 637002, China

3. Key Laboratory of Optimization Theory and Applications, China West Normal University of Sichuan Province, Nanchong 637002, China

4. School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China

Abstract

As we take stock of the contemporary issue, remote sensing images are gradually advancing towards hyperspectral–high spatial resolution (H2) double-high images. However, high resolution produces serious spatial heterogeneity and spectral variability while improving image resolution, which increases the difficulty of feature recognition. So as to make the best of spectral and spatial features under an insufficient number of marking samples, we would like to achieve effective recognition and accurate classification of features in H2 images. In this paper, a cross-hop graph network for H2 image classification(H2-CHGN) is proposed. It is a two-branch network for deep feature extraction geared towards H2 images, consisting of a cross-hop graph attention network (CGAT) and a multiscale convolutional neural network (MCNN): the CGAT branch utilizes the superpixel information of H2 images to filter samples with high spatial relevance and designate them as the samples to be classified, then utilizes the cross-hop graph and attention mechanism to broaden the range of graph convolution to obtain more representative global features. As another branch, the MCNN uses dual convolutional kernels to extract features and fuse them at various scales while attaining pixel-level multi-scale local features by parallel cross connecting. Finally, the dual-channel attention mechanism is utilized for fusion to make image elements more prominent. This experiment on the classical dataset (Pavia University) and double-high (H2) datasets (WHU-Hi-LongKou and WHU-Hi-HongHu) shows that the H2-CHGN can be efficiently and competently used in H2 image classification. In detail, experimental results showcase superior performance, outpacing state-of-the-art methods by 0.75–2.16% in overall accuracy.

Funder

National Natural Science Foundation of China

Innovation TeamFunds of ChinaWest Normal University

Sichuan Science and Technology Program of China

A Ba Achievements Transformation Program

Sichuan Province Transfer Payment Application and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3