Comparative Study of Seafloor Topography Prediction from Gravity–Geologic Method and Analytical Algorithm

Author:

Tian Yuwei1ORCID,Xu Huan1ORCID,Yu Jinhai1,Wang Qiuyu1ORCID,Jia Yongjun2ORCID,Chen Xin3

Affiliation:

1. Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

2. National Satellite Ocean Application Service, Beijing 100081, China

3. Naval Research Institute, Tianjin 300061, China

Abstract

Seafloor topography prediction can fill in sea areas without ship sounding data. However, the dependence of various topographic prediction algorithms on ship soundings varies significantly. Hence, this study explores the impact of the number and distributions of ship soundings on topographic prediction using the gravity–geologic method (GGM) and an analytical algorithm. Firstly, this study investigates the influence of ship sounding coverage on the two algorithms. The simulation results demonstrate that increasing coverage from 5.40% to 31.80%, coupled with more uniform distributions across the study area, substantially reduces the RMS error of the GGM. Specifically, the RMS error decreases from 238.68 m to 42.90 m, an improvement of 82.03%. The analytical algorithm maintains a consistent RMS error of 40.39 m because it does not depend on ship soundings. Furthermore, we select a 1° × 1° sea area (134.8°–135.8°E, 30.0°–31.0°N), and the ship soundings are divided into two control groups, Part I and Part II, with coverages of 8.19% and 33.19%, respectively. When Part II is used for calculation, the RMS error of the GGM decreases from 204.17 m to 126.95 m compared to when Part I is used, while the analytical algorithm exhibits an RMS error of 167.94 m. The findings indicate that the prediction accuracy of the GGM is significantly affected by ship soundings, whereas the analytical algorithm is more stable and independent of ship soundings. Based on simulation experiments and realistic examples, when the effective ship soundings coverage exceeds 30%, the GGM may have more advantages. Conversely, the analytical algorithm may be better. This suggests that effectively combining and utilizing different algorithms based on the ship sounding coverage can improve the accuracy of topographic prediction. This will provide a basis for integrating multiple algorithms to construct a global seafloor topography model.

Funder

National Nature Science Funds of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3