Direct and Remote Sensing Monitoring of Plant Salinity Stress in a Coastal Back-Barrier Environment: Mediterranean Pine Forest Stress and Mortality as a Case Study

Author:

Alessandrino Luigi1ORCID,Giuditta Elisabetta1,Faugno Salvatore2,Colombani Nicolò3ORCID,Mastrocicco Micòl1ORCID

Affiliation:

1. DiSTABiF–Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, CE, Italy

2. Department of Agriculture, Napoli University “Federico II”, Via Università 100, 80055 Portici, NA, Italy

3. SIMAU–Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, AN, Italy

Abstract

The increase in atmospheric and soil temperatures in recent decades has led to unfavorable conditions for plants in many Mediterranean coastal environments. A typical example can be found along the coast of the Campania region in Italy, within the “Volturno Licola Falciano Natural Reserve”, where a pine forest suffered a dramatic loss of trees in 2021. New pines were planted in 2023 to replace the dead ones, with a larger tree layout and interspersed with Mediterranean bushes to replace the dead pine forest. A direct (in situ) monitoring program was planned to analyze the determinants of the pine salinity stress, coupled with Sentinel-2 L2A data; in particular, multispectral indices NDVI and NDMI were provided by the EU Copernicus service for plant status and water stress level information. Both the vadose zone and shallow groundwater were monitored with continuous logging probes. Vadose zone monitoring indicated that salinity peaked at a 30 cm soil depth, with values up to 1.9 g/L. These harsh conditions, combined with air temperatures reaching peaks of more than 40 °C, created severe difficulties for pine growth. The results of the shallow groundwater monitoring showed that the groundwater salinity was low (0.35–0.4 g/L) near the shoreline since the dune environment allowed rapid rainwater infiltration, preventing seawater intrusion. Meanwhile, salinity increased inland, reaching a peak at the end of the summer, with values up to 2.8 g/L. In November 2023, salts from storm-borne aerosols (“sea spray”) deposited on the soil caused the sea-facing portion of the newly planted pines to dry out. Differently, the pioneer vegetation of the Mediterranean dunes, directly facing the sea, was not affected by the massive deposition of sea spray. The NDMI and NDVI data were useful in distinguishing the old pine trees suffering from increasing stress and final death but were not accurate in detecting the stress conditions of newly planted, still rather short pine trees because their spectral reflectance largely interfered with the adjacent shrub growth. The proposed coupling of direct and remote sensing monitoring was successful and could be applied to detect the main drivers of plant stress in many other Mediterranean coastal environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3