Multi-View Feature Fusion and Rich Information Refinement Network for Semantic Segmentation of Remote Sensing Images

Author:

Liu Jiang1ORCID,Cheng Shuli1ORCID,Du Anyu1ORCID

Affiliation:

1. School of Computer Science and Technology, Xinjiang University, Ürümqi 830046, China

Abstract

Semantic segmentation is currently a hot topic in remote sensing image processing. There are extensive applications in land planning and surveying. Many current studies combine Convolutional Neural Networks (CNNs), which extract local information, with Transformers, which capture global information, to obtain richer information. However, the fused feature information is not sufficiently enriched and it often lacks detailed refinement. To address this issue, we propose a novel method called the Multi-View Feature Fusion and Rich Information Refinement Network (MFRNet). Our model is equipped with the Multi-View Feature Fusion Block (MAFF) to merge various types of information, including local, non-local, channel, and positional information. Within MAFF, we introduce two innovative methods. The Sliding Heterogeneous Multi-Head Attention (SHMA) extracts local, non-local, and positional information using a sliding window, while the Multi-Scale Hierarchical Compressed Channel Attention (MSCA) leverages bar-shaped pooling kernels and stepwise compression to obtain reliable channel information. Additionally, we introduce the Efficient Feature Refinement Module (EFRM), which enhances segmentation accuracy by interacting the results of the Long-Range Information Perception Branch and the Local Semantic Information Perception Branch. We evaluate our model on the ISPRS Vaihingen and Potsdam datasets. We conducted extensive comparison experiments with state-of-the-art models and verified that MFRNet outperforms other models.

Funder

the Scientiffc and Technological Innovation 2030 Major Project

the Basic Research Funds for Colleges and Universities in Xinjiang Uygur Autonomous Region

the Key Laboratory Open Projects in Xinjiang Uygur Autonomous Region

the Graduate Research and Innovation Project of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3