Albumin Deficiency Reduces Hepatic Steatosis and Improves Glucose Metabolism in a Mouse Model of Diet-Induced Obesity

Author:

Abdollahi Afsoun1ORCID,Narayanan Sanjeev K.2,Frankovich Alexandra2,Lai Yen-Chun34,Zhang Yi1ORCID,Henderson Gregory C.1ORCID

Affiliation:

1. Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA

2. Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA

3. Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA

4. Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Abstract

Serum albumin facilitates the transport of free fatty acids (FFAs) from adipose tissue to other organs. It was not known if impeding this process could protect from hepatic steatosis and metabolic dysfunction in obesity. We tested whether albumin knockout (Alb−/−) mice would exhibit a reduction in plasma FFA concentration, reduced hepatic lipid accumulation, and improved glucoregulation as compared to wild-type (WT) mice. Male homozygous albumin knockout mice (Alb−/−) and WT controls were fed a low-fat diet (LFD) or high-fat diet (HFD). Alb−/− mice exhibited a similar body weight gain and body composition as WT on both diets. Despite HFD-induced obesity, Alb−/− mice were protected from various comorbidities. Compared to WT mice on the HFD, Alb−/− exhibited lower plasma FFA levels, lower blood glucose levels during glucose tolerance and insulin tolerance tests, and lower hepatic steatosis and inflammation. Alb−/− mice on HFD also exhibited elevated expression of multiple genes in the liver and adipose tissues, such as peroxisome proliferator-activated receptor α in both tissues, as well as glucose transporter-4 and adiponectin in adipose tissues. The results indicate that albumin’s FFA transport function may be involved in the development of hepatic lipid accumulation and dysregulated glucose metabolism in obesity.

Funder

NIH-funded Center for Diabetes and Metabolic Diseases at Indiana University School of Medicine

McKinley Educational Initiative and NIH

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3