Time Series Forecasting Using a Two-Level Multi-Objective Genetic Algorithm: A Case Study of Maintenance Cost Data for Tunnel Fans

Author:

Al-Douri Yamur,Hamodi HussanORCID,Lundberg Jan

Abstract

The aim of this study has been to develop a novel two-level multi-objective genetic algorithm (GA) to optimize time series forecasting data for fans used in road tunnels by the Swedish Transport Administration (Trafikverket). Level 1 is for the process of forecasting time series cost data, while level 2 evaluates the forecasting. Level 1 implements either a multi-objective GA based on the ARIMA model or a multi-objective GA based on the dynamic regression model. Level 2 utilises a multi-objective GA based on different forecasting error rates to identify a proper forecasting. Our method is compared with using the ARIMA model only. The results show the drawbacks of time series forecasting using only the ARIMA model. In addition, the results of the two-level model show the drawbacks of forecasting using a multi-objective GA based on the dynamic regression model. A multi-objective GA based on the ARIMA model produces better forecasting results. In level 2, five forecasting accuracy functions help in selecting the best forecasting. Selecting a proper methodology for forecasting is based on the averages of the forecasted data, the historical data, the actual data and the polynomial trends. The forecasted data can be used for life cycle cost (LCC) analysis.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3