Genetic Characteristics and Enzymatic Activities of Bacillus velezensis KS04AU as a Stable Biocontrol Agent against Phytopathogens

Author:

Diabankana Roderic Gilles ClaretORCID,Shulga Elena Urievna,Validov Shamil Zavdatovich,Afordoanyi Daniel MawuenaORCID

Abstract

Bacillus velezensis has a broad application in the agricultural and industrial sectors for its biocontrol properties and its potential active secondary metabolites. The defined phenotypic characteristics of a strain vary according to its ecosystem. We report the complete genomic analysis of B. velezensis KS04AU compared to four strains of B. velezensis (SRCM102752, ONU-553, FZB42, and JS25R) and two closely related Bacillus amyloliquefaciens (LL3 and IT-45). A total of 4771 protein coding genes comprises the KS04AU genome, in comparison with 3334 genes core genes found in the six other strains and the remaining 1437 shell genes. Average nucleotide identity of the target strain to the six other strains showed 99.65% to B. velezensis ONU-553, sharing 60 orthologous genes. Secondary metabolite gene cluster analysis of all strains showed that KS04AU has a mersacidin cluster gene, which is absent in the genome of the other strains. PHASTER analysis also showed KS04AU harboring two phages (Aeribacllus AP45 NC_048651 and Paenibacillus_Tripp NC_028930), which were also unique in comparison with the other strains. Analysis on anti-microbial resistance genes showed no difference in the genome of KS04AU to any of the other genomes, with the exception of B. amyloliquefaciens IT-45 which had one unique small multidrug-resistance antibiotic efflux-pump gene (qacJ). The CRISPR-Cas systems in the strains were also compared showing one CRISPR gene found only in KS04AU. Hydrolytic activity, antagonistic activity against phytopathogens (Fusarium oxysporum, Fusarium graminearum, Alternaria alternata and Pseudomonas syringae) and biocontrol against tomato foot and root rot experiments were carried out. B. velezensis KS04AU inhibits the growth of all phytopathogens tested, produces hydrolytic activity, and reduces Fusarium oxysporum f.sp. radicis-lycopersici (Forl) ZUM2407 lesions up to 46.02 ± 0.12%. The obtained results confirm B. velezensis KS04AU as a potential biocontrol strain for plant protection.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Plant Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3