Removal of Methylene Blue and Congo Red Using a Chitosan–Graphene Oxide-Electrosprayed Functionalized Polymeric Nanofiber Membrane

Author:

Dissanayake Nethmi S. L.1ORCID,Pathirana Maadri A.1,Wanasekara Nandula D.1,Mahltig Boris2ORCID,Nandasiri Gayani K.1ORCID

Affiliation:

1. Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka

2. Faculty of Textile and Clothing Technology, Hochschule Niederrhein-University of Applied Sciences, 41065 Mönchengladbach, Germany

Abstract

Untreated textile effluent may contain toxic organic pollutants that can have negative impacts on the ecosystem. Among the harmful chemicals present in dyeing wastewater, there are two frequently used organic dyes: methylene blue (cationic) and congo red (anionic). The current study presents investigations on a novel two-tier nanocomposite membrane, i.e., a top layer formed of electrosprayed chitosan–graphene oxide and a bottom layer consisting of an ethylene diamine functionalized polyacrylonitrile electrospun nanofiber for the simultaneous removal of the congo red and methylene blue dyes. The fabricated nanocomposite was characterized using FT-IR spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and Drop Shape Analyzer. Isotherm modeling was used to determine the efficiency of dye adsorption for the electrosprayed nanocomposite membrane and the confirmed maximum adsorptive capacities of 182.5 mg/g for congo red and 219.3 mg/g for methylene blue, which fits with the Langmuir isotherm model, suggesting uniform single-layer adsorption. It was also discovered that the adsorbent preferred an acidic pH level for the removal of congo red and a basic pH level for the removal of methylene blue. The gained results can be a first step for the development of new wastewater cleaning techniques.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3