Inorganic Skeleton Reinforcement—A Generic Approach to Improve the Mechanical Properties of Biochar

Author:

Chen Zhikai1,Jiang Xiaoli12,Zhang Yagang12ORCID,Li Wei1,Tang Zhiqiang1,Liu Yanxia12,Zhao Lin1

Affiliation:

1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China

2. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Biochar is considered as a promising candidate for emerging sustainable energy systems and environmental technology applications. However, the improvement of mechanical properties remains challenges. Herein, we propose a generic strategy to enhance the mechanical properties of bio-based carbon materials through inorganic skeleton reinforcement. As a proof-of-concept, silane, geopolymer, and inorganic gel are selected as precursors. The composites’ structures are characterized and an inorganic skeleton reinforcement mechanism is elucidated. Specifically, two types of reinforcement of the silicon-oxygen skeleton network formed in situ with biomass pyrolysis and the silica-oxy-al-oxy network are constructed to improve the mechanical properties. A significant improvement in mechanical strength was achieved for bio-based carbon materials. The compressive strength of well-balanced porous carbon materials modified by silane can reach up to 88.9 kPa, geopolymer-modified carbon material exhibits an enhanced compressive strength of 36.8 kPa, and that of inorganic-gel-polymer-modified carbon material is 124.6 kPa. Moreover, the prepared carbon materials with enhanced mechanical properties show excellent adsorption performance and high reusability for organic pollutant model compound methylene blue dye. This work demonstrates a promising and universal strategy for enhancing the mechanical properties of biomass-derived porous carbon materials.

Funder

Key Research and Development Projects of Sichuan Province

“Tianfu Emei” Science and Technology Innovation Leader Program in Sichuan Province

University of Electronic Science and Technology of China Talent Start-up Funds

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3