Memristor-Based Signal Processing for Compressed Sensing

Author:

Wang Rui1ORCID,Zhang Wanlin1,Wang Saisai2,Zeng Tonglong1,Ma Xiaohua1,Wang Hong1,Hao Yue1

Affiliation:

1. Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China

2. Key Laboratory of Wide Band Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China

Abstract

With the rapid progress of artificial intelligence, various perception networks were constructed to enable Internet of Things (IoT) applications, thereby imposing formidable challenges to communication bandwidth and information security. Memristors, which exhibit powerful analog computing capabilities, emerged as a promising solution expected to address these challenges by enabling the development of the next-generation high-speed digital compressed sensing (CS) technologies for edge computing. However, the mechanisms and fundamental properties of memristors for achieving CS remain unclear, and the underlying principles for selecting different implementation methods based on various application scenarios have yet to be elucidated. A comprehensive overview of memristor-based CS techniques is currently lacking. In this article, we systematically presented CS requirements on device performance and hardware implementation. The relevant models were analyzed and discussed from the mechanism level to elaborate the memristor CS system scientifically. In addition, the method of deploying CS hardware using the powerful signal processing capabilities and unique performance of memristors was further reviewed. Subsequently, the potential of memristors in all-in-one compression and encryption was anticipated. Finally, existing challenges and future outlooks for memristor-based CS systems were discussed.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference96 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3