Optimization of Pulsed Laser Ablation and Radio-Frequency Sputtering Tandem System for Synthesis of 2D/3D Al2O3-ZnO Nanostructures: A Hybrid Approach to Synthesis of Nanostructures for Gas Sensing Applications

Author:

Labis Joselito Puzon1,Albrithen Hamad A.12,Hezam Mahmoud1ORCID,Ali Shar Muhammad1ORCID,Algarni Ahmad2,Alhazaa Abdulaziz N.12ORCID,El-Toni Ahmed Mohamed1,Alduraibi Mohammad Abdulaziz2ORCID

Affiliation:

1. King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia

2. Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

In this paper, a unique hybrid approach to design and synthesize 2D/3D Al2O3-ZnO nanostructures by simultaneous deposition is presented. Pulsed laser deposition (PLD) and RF magnetron sputtering (RFMS) methods are redeveloped into a single tandem system to create a mixed-species plasma to grow ZnO nanostructures for gas sensing applications. In this set-up, the parameters of PLD have been optimized and explored with RFMS parameters to design 2D/3D Al2O3-ZnO nanostructures, including nanoneedles/nanospikes, nanowalls, and nanorods, among others. The RF power of magnetron system with Al2O3 target is explored from 10 to 50 W, while the ZnO-loaded PLD’s laser fluence and background gases are optimized to simultaneously grow ZnO and Al2O3-ZnO nanostructures. The nanostructures are either grown via 2-step template approach, or by direct growth on Si (111) and MgO<0001> substrates. In this approach, a thin ZnO template/film was initially grown on the substrate by PLD at ~300 °C under ~10 milliTorr (1.3 Pa) O2 background pressure, followed by growth of either ZnO or Al2O3-ZnO, using PLD and RFMS simultaneously under 0.1–0.5 Torr (13–67 Pa), and Ar or Ar/O2 background in the substrate temperate range of 550–700 °C. Growth mechanisms are then proposed to explain the formation of Al2O3-ZnO nanostructures. The optimized parameters from PLD-RFMS are then used to grow nanostructures on Au-patterned Al2O3-based gas sensor to test its response to CO gas from 200 to 400 °C, and a good response is observed at ~350 °C. The grown ZnO and Al2O3-ZnO nanostructures are quite exceptional and remarkable and have potential applications in optoelectronics, such in bio/gas sensors.

Funder

Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3