Aqueous Pb(II) Removal Using ZIF-60: Adsorption Studies, Response Surface Methodology and Machine Learning Predictions

Author:

Ismail Usman M.1ORCID,Onaizi Sagheer A.23,Vohra Muhammad S.14ORCID

Affiliation:

1. Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

2. Chemical Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

3. Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

4. Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Abstract

Zeolitic imidazolate frameworks (ZIFs) are increasingly gaining attention in many application fields due to their outstanding porosity and thermal stability, among other exceptional characteristics. However, in the domain of water purification via adsorption, scientists have mainly focused on ZIF-8 and, to a lesser extent, ZIF-67. The performance of other ZIFs as water decontaminants is yet to be explored. Hence, this study applied ZIF-60 for the removal of lead from aqueous solutions; this is the first time ZIF-60 has been used in any water treatment adsorption study. The synthesized ZIF-60 was subjected to characterization using FTIR, XRD and TGA. A multivariate approach was used to investigate the effect of adsorption parameters on lead removal and the findings revealed that ZIF-60 dose and lead concentration are the most significant factors affecting the response (i.e., lead removal efficiency). Further, response surface methodology-based regression models were generated. To further explore the adsorption performance of ZIF-60 in removing lead from contaminated water samples, adsorption kinetics, isotherm and thermodynamic investigations were conducted. The findings revealed that the obtained data were well-fitted by the Avrami and pseudo-first-order kinetic models, suggesting that the process is complex. The maximum adsorption capacity (qmax) was predicted to be 1905 mg/g. Thermodynamic studies revealed an endothermic and spontaneous adsorption process. Finally, the experimental data were aggregated and used for machine learning predictions using several algorithms. The model generated by the random forest algorithm proved to be the most effective on the basis of its significant correlation coefficient and minimal root mean square error (RMSE).

Funder

Deanship of Research Oversight and Coordination (DROC) at King Fahd University of Petroleum and Minerals (KFUPM) in the terms of Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3