Study on Improving Physical–Mechanical Properties and Frost Resistance of Straw–Mortar Composite Wall Materials by Pretreatment

Author:

Zhao Rongfei1,Feng Binbin1,Fu Jia1,Gao Wei2

Affiliation:

1. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China

2. College of Engineering, Shenyang Agricultural University, Shenyang 110866, China

Abstract

In recent years, China has increased the material utilization of crop straw, and the strength of straw–mortar composite wall materials is low, which limits their large-scale utilization. Pretreatment can improve the physico-mechanical and frost resistance properties of straw–mortar composite wall materials. In this study, the Box–Behnken design in the Design-Expert software was used to design and carry out a three-factor and three-level interactive experiment and freeze–thaw cycle experiment with the straw content, pretreatment time, and reagent concentration as influencing factors, and the compressive strength, water absorption rate, and dry density as response values. The results showed that the impact of each factor on the response value, from high to low, was the straw content, pre-preparation time, and reagent concentration. When the straw content was 10%, the preparation time was 5 min, and the reagent concentration was 5%, the physical and mechanical properties of the straw–mortar composite wall material were the best. At the same time, the compressive strength was 6.52 MPa, the water absorption rate was 17.7%, and the dry density was 1396.33 kg·m−3, which was 67% higher, 31% lower, and 37% higher than that of the untreated straw–mortar composite wall materials. After the freeze–thaw cycle, the mass loss rate of the composite materials was less than 5%, which met the requirements of the frost resistance specifications; the strength loss rate of the composite materials varied between 19.7% and 27.8%, although some test blocks did not meet the requirements of less than 25% in the specification. The compressive strength was greatly improved compared with the untreated composite materials in the related research, and the water absorption rate was about 25% lower than that of the untreated straw–mortar composite wall materials. Pretreatment significantly improved the physico-mechanical and frost resistance properties of the straw–mortar composite wall materials.

Funder

National Natural Science Foundation of China

Liaoning Province Natural Science Fund Project

University Overseas Training Project of Liaoning Provincial Department of education

Key Research and Development Projects in Liaoning Province

Publisher

MDPI AG

Reference52 articles.

1. Current situation of crop straw resources and their utilization in China;Han;J. Agric. Eng.,2002

2. Present research situation and prospect of compound straw wall board;Chen;Build. Eng. Eff.,2017

3. Application of agro-waste for sustainable construction materials: A review;Madurwar;Constr. Build. Mater.,2013

4. Development of a new bio-composite for building insulation and structural purpose using corn stalk and magnesium phosphate cement;Ahmad;Energy Build.,2018

5. Xie, X.L., and Li, H.B. (2021). Compatibility between rice straw fibers with different pretreatments and ordinary Portland cement. Materials, 14.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3