Artificial Intelligence-Assisted RFID Tag-Integrated Multi-Sensor for Quality Assessment and Sensing

Author:

Song Chenyang1ORCID,Wu Zhipeng1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK

Abstract

Radio frequency identification (RFID) is well known as an identification, track, and trace approach and is considered to be the key physical layer technology for the industrial internet of things (IIoT). However, IIoT systems have to introduce additional complex sensor networks for pervasive monitoring, and there are still challenges related to item-level sensing and data recording. To overcome the shortage, this work proposes an artificial intelligence (AI)-assisted RFID-based multi-sensing technology. Both passive and semi-passive RFID tag-integrated multi-sensors are developed. The main contributions and the novelty of this investigation are as follows. A UHF RFID tag-integrated multi-sensor with a boosted charge pump is proposed; it enables high RF signal sensitivity and a long operational range. The whole hardware design, including the antenna and energy harvester, are studied. Moreover, a demonstration with real-world ham product sensing data is conducted. This work also proposes and successfully demonstrates the integration of machine learning algorithms, specifically the NARX neural network, with RFID sensing data for food product quality assessment and sensing (QAS). This application of machine learning to RFID-generated data for quality assessment is also a novel aspect of the research. The deployment of an autoregressive model with an exogenous input (NARX) neural network model, tailored for nonlinear processes, emerges as the most effective, achieving a root mean square error (RMSE) of 0.007 and an R-squared value of 0.99 for ham product QAS. By deploying the technology, low-cost, timely, and flexible product QAS can be achieved in manufacturing industries, which helps product quality improvement and the optimization of the manufacturing line and supply chain.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3