A Multi-Level Operation Method for Improving the Resilience of Power Systems under Extreme Weather through Preventive Control and a Virtual Oscillator

Author:

Li Chenghao1,Zhang Di1,Han Ji2ORCID,Tian Chunsun1,Xie Longjie3,Wang Chenxia2,Fang Zhou1,Li Li4,Zhang Guanyu1

Affiliation:

1. Electric Power Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450000, China

2. College of New Energy, Harbin Institute of Technology at Weihai, Weihai 264209, China

3. College of Lilac, Harbin Institute of Technology at Weihai, Weihai 264209, China

4. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

Abstract

This paper proposes a multi-level operation method designed to enhance the resilience of power systems under extreme weather conditions by utilizing preventive control and virtual oscillator (VO) technology. Firstly, a novel model for predicting time intervals between successive failures of the power system during extreme weather is introduced. Based on this, this paper proposes a preventive control method considering the system ramping and transmission constraints prior to failures so as to ensure the normal electricity demand within the system. Further, a VO-based adaptive frequency control strategy is designed to accelerate the regulation speed and eliminate the frequency deviation. Finally, the control performance is comprehensively compared under different experimental conditions. The results verify that the method accurately predicted the time of the line fault occurrence, with a maximum error not exceeding 3 min compared to the actual occurrence; also, the virtual oscillator control (VOC) strategy outperformed traditional droop control in frequency stabilization, achieving stability within 2 s compared to the droop control’s continued fluctuations beyond 20 s. These results highlight VOC’s superior effectiveness in frequency stability and control in power systems.

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3