Evaluation of Geomagnetic Induced Current on 275 kV Power Transformer for a Reliable and Sustainable Power System Operation in Malaysia

Author:

Zawawi Anis Adiba,Ab Aziz Nur FadilahORCID,Ab Kadir Mohd Zainal Abidin,Hashim Halimatun,Mohammed ZmnakoORCID

Abstract

Geomagnetic induced current (GIC) occurs as a direct consequence of abnormal space weather which starts from the sun and may flow into a power system network through neutral grounding connections. The flow of GIC through grounded neutral power transformer has been a major concern to researchers since it can potentially affect power system equipment. Most of the previous research was focused on high and mid latitude countries only. However, it has been proven that the GIC is not only limited to high and mid latitudes, but also extends to power systems at lower geographic latitudes. This paper aims to investigate the impacts of GIC on selected 275 kV subpower system networks in Peninsular Malaysia, which is among the low latitude countries. Its impact in terms of magnitude and duration is also assessed together with the use of neutral earthing resistor (NER) as a potential blocking component to reduce the impact of GIC on the Malaysian power system network. Results demonstrated that when GIC exists in the power system, power transformers undergo half-cycle saturation that may lead to a reactive power loss and power system voltage instability. In this case, the power transformer can only withstand a maximum GIC value of 7 A, and beyond this value, if prolonged, may lead to voltage instability. It turned out that GIC magnitude had more impact compared to duration. However, long duration with high magnitude of GIC is the most hazardous to power transformers and could potentially cause major faults in the power system network. As part of mitigation, NER with a value of 315.10 Ω can be used to limit the GIC current flow and thus provide protection to the power system network. Clearly, the issue of GIC undoubtedly affects the reliability, security and sustainability of power system operation, especially networks with highly critical load and capacity and, therefore, thorough studies are required to assess and mitigate this issue.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3