Aquatic Macrophytes in Constructed Wetlands: A Fight against Water Pollution

Author:

Kochi Leticia Y.,Freitas Patricia L.,Maranho Leila T.,Juneau Philippe,Gomes Marcelo P.ORCID

Abstract

There is growing concern among health institutions worldwide to supply clean water to their populations, especially to more vulnerable communities. Although sewage treatment systems can remove most contaminants, they are not efficient at removing certain substances that can be detected in significant quantities even after standard treatments. Considering the necessity of perfecting techniques that can remove waterborne contaminants, constructed wetland systems have emerged as an effective bioremediation solution for degrading and removing contaminants. In spite of their environmentally friendly appearance and efficiency in treating residual waters, one of the limiting factors to structure efficient artificial wetlands is the choice of plant species that can both tolerate and remove contaminants. For sometimes, the chosen plants composing a system were not shown to increase wetland performance and became a problem since the biomass produced must have appropriated destination. We provide here an overview of the use and role of aquatic macrophytes in constructed wetland systems. The ability of plants to remove metals, pharmaceutical products, pesticides, cyanotoxins and nanoparticles in constructed wetlands were compared with the removal efficiency of non-planted systems, aiming to evaluate the capacity of plants to increase the removal efficiency of the systems. Moreover, this review also focuses on the management and destination of the biomass produced through natural processes of water filtration. The use of macrophytes in constructed wetlands represents a promising technology, mainly due to their efficiency of removal and the cost advantages of their implantation. However, the choice of plant species composing constructed wetlands should not be only based on the plant removal capacity since the introduction of invasive species can become an ecological problem.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference107 articles.

1. Progress on Drinking Water, Sanitation and Hygiene—Joint Monitoring Programme 2017 Update and SDG Baselines,2017

2. Sustainable Development Goals—Goal 6: Clean Water and Sanitationhttps://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-6-clean-water-and-sanitation.html

3. Treatment technologies for emerging contaminants in water: A review

4. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review

5. Occurrence and fate of emerging contaminants in water environment: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3